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Abstract: In this study, the distributed averaging of high-dimensional first-order agents is investigated with relative-state-
dependent measurement noises. Each agent can measure or receive its neighbours’ state information with random noises,
whose intensity is a non-linear matrix function of agents’ relative states. By the tools of stochastic differential equations and
algebraic graph theory, the authors give sufficient conditions to ensure mean square and almost sure average consensus and
the convergence rate and the steady-state error for average consensus are quantified. Especially, if the noise intensity function
depends linearly on the relative distance of agents’ states, then a sufficient condition is given in terms of the control gain,
the noise intensity coefficient constant, the number of agents and the dimension of agents’ dynamics.
1 Introduction

In recent years, the distributed coordination of multi-
agent systems with environmental uncertainties has been
a hot topic of the systems and control community [1–
16]. There are various kinds of uncertainties in multi-
agent networks, such as the communication and measure-
ment noises involved by the information exchange between
adjacent agents, the communication delay, the encoding–
decoding error, the packet dropouts for digital commu-
nications and so on. Fruitful results have been obtained
for distributed consensus with random noises [1–4]. For
continuous-time stochastic approximation-type protocols, Li
and Zhang [3] gave the necessary and sufficient conditions
on the control gains to ensure mean square average con-
sensus. More extended results of continuous-time stochastic
approximation-type multi-agent consensus can be found in
[14] for the case with time delays, in [15] for the case of
leader following and in [16, 17] for the second-order and
general linear dynamics with local state feedback.

Most of the above literature assume that the intensity
of noises is time invariant and independent of agents’
states. However, this assumption does not always hold for
some important measurement or communication schemes.
For consensus with logarithmic quantised measurements, the
uncertainties introduced by the quantisation can be modelled
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by relative-state-dependent white noises in a stochastic
framework [8]. For the case with analogue Gaussian fad-
ing measurements, the uncertainties of the measurement are
also relative-state-dependent noises [6, 18]. In [19], we con-
sidered the distributed averaging corrupted by relative-state-
dependent measurement noises. Each agent can measure or
receive its neighbours’ state information with relative-state-
dependent measurement random noises. By investigating the
structure of this interaction and the tools of stochastic dif-
ferential equations, we developed several small consensus
gain theorems to give sufficient conditions in terms of the
control gain, the number of agents and the noise intensity
function to ensure mean square and almost sure consensus.
Especially, for the case with homogeneous communication
and control channels, a necessary and sufficient condition to
ensure mean square consensus on the control gain is given
and it is shown that the control gain is independent of the
specific network topology, but only depends on the number
of nodes and the noise coefficient constant. For the mea-
surement model of [19], the measurement noises of different
state components are the same and the noise intensity is a
vector function. This model cannot cover the case where
the measurement noises for different state components are
mutually different and coupled together. For this case, the
noise intensity function is more suitable to be modelled as
a matrix function of the relative state, but not a vector. For
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some communication models, the relative distances of nodes
are important factors of the statistical properties of channels
[20, 21]. For this case, if locations are parts of agents’ states,
then the relative distance can be viewed as a function of the
relative state. If the relative-distance-dependent noises have
different intensities for different state components, then the
model of the measurement noises comes down to the case
with non-linear matrix functions of the relative state.

In this paper, we consider the distributed averaging
of high-dimensional first-order agents with relative-state-
dependent measurement noises. There are N agents in
the network. The dynamics of agents are described by
n-dimensional first-order integrators, that is, there are n
state components and n control channels for each agent.
The information interaction of agents is described by an
undirected graph. Each agent can measure or receive its
neighbours’ state information with random noises. Differ-
ent from our previous work for the case with vector noise
intensity functions [19], here, the noise intensity is a non-
linear matrix-valued function of relative states of agents. By
the tools of stochastic differential equations and algebraic
graph theory, we give sufficient conditions to ensure mean
square and almost sure average consensus. The convergence
rate and the steady-state error for average consensus are
quantified. Especially, if the noise intensity function depends
linearly on the relative distance with intensity coefficient
constant σ , then a positive control gain k which satisfies
[nkσ 2(N − 1)/N ] < 1 can ensure asymptotically unbiased
mean square and almost sure average consensus.

The remainder of this paper is organised as follows. In
Section 2, we formulate the models of agents, the mea-
surement, the network and the problem to be investigated.
In Section 3, we give sufficient conditions on the control
and network parameters to ensure mean square and almost
sure average consensus, and the case with special noise
intensity functions and the case with two agents are investi-
gated, respectively. In Section 4, we give some concluding
remarks.

Throughout this paper, we use the following notations.
R+ denotes the set of non-negative real numbers. 1 denotes
a column vector with all ones. JN denotes the matrix 1

N
11T.

IN denotes the N -dimensional identity matrix. ON denotes
the N -dimensional zero matrix. For a given matrix or vec-
tor A, its transpose is denoted by AT, its trace is denoted
by tr(A), its trace norm

√
tr(ATA) is denoted by ‖A‖F and

its Euclidean norm is denoted by ‖A‖. For two matrices A
and B, A ⊗ B denotes their Kronecker product. For a given
random variable or vector X , the mathematical expectation
of X is denoted by E[X ].

2 Problem formulation

2.1 Dynamic network model

In this paper, we consider the distributed averaging for a
network of agents with the dynamics

ẋi(t) = ui(t), i = 1, 2, . . . , N (1)

where xi(t) ∈ R
n and ui(t) ∈ R

n. Here, each agent has n
control channels, and each component of xi(t) is controlled
by a control channel. Denote x(t) = [xT

1 (t), . . . , xT
N (t)]T and

u(t) = [uT
1 (t), . . . , uT

N (t)]T. The information flow structure
among different agents is modelled as an undirected graph
G = {V , A}, where V = {1, 2, . . . , N } is the set of nodes with
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i representing the ith agent, and A = [aij] ∈ R
N×N is the

adjacency matrix of G with element aij = 1 or 0 indicat-
ing whether or not there is an information flow from agent
j to agent i directly. The dynamic systems together with
the information flow graph is called a dynamic network,
and is denoted by (G, x) [22]. The Laplacian matrix of G
is denoted by L. The ith agent can receive information from
its neighbours with random perturbation in the form

yji(t) = xj(t) + fji(xj(t) − xi(t))ξji(t), j ∈ Ni (2)

where Ni = {j ∈ V | aij = 1} denotes the set of neighbours of
agent i, yji(t) denotes the measurement of the agent j’s state
xj(t) by agent i, and ξji(t) ∈ R

n denotes the measurement
noise. The noise intensity function fji(·) is a mapping from
R

n to R
n×n which satisfies fji(0) = On. The model (2) can

also be regarded as a measurement model for the relative
state, which can be written as

zji(t) = xj(t) − xi(t) + fji(xj(t) − xi(t))ξji(t), j ∈ Ni (3)

where zji(t) is the agent i’s measurement of the relative
state xj(t) − xi(t) with measurement noises. For the mea-
surement/communication model (2) and (3), we will use the
following assumptions.

Assumption 2.1: The noise processes {ξji(t), i, j = 1, 2, . . . ,
N } are independent n-dimensional Gaussian white noises,
that is,

∫t

0 ξji(s) ds = wji(t), t ≥ 0, where {wji(t), i, j =
1, 2, . . . , N } are independent n-dimensional Brownian
motions.

Assumption 2.2: There exists a positive constant γmax such
that ‖fji(x)‖F ≤ γmax‖x‖, ∀x ∈ R

n, i 	= j, i, j = 1, 2, . . . , N .

Remark 1: In distributed averaging with precise commu-
nication, it is always assumed that the states and control
inputs of agents are scalars. This assumption will not
loose any generality for the case with precise communi-
cation and with non-state-dependent measurement noises,
since the state components of agents are decoupled. How-
ever, for the case with relative-state-dependent measure-
ment noises, from model (2), one can see that the noise
intensity of different state components will be generally
coupled together. This leads to an essential difference
between scalar and high-dimensional models for the case
with relative-state-dependent measurement noises. The cross
interferences of communication channels of different state
components on consensus conditions will be investigated in
Section 3.

Remark 2: Here, the measurement model is different from
that of [19], where for a given link (j, i), the measure-
ment noises of different state components are the same
one-dimensional Brownian motion ξji(t). Here, for a given
link (j, i), the measurement noises of different state com-
ponents are independent Brownian motions, which form an
n-dimensional Brownian motion ξji(t) and coupled together
by the matrix function fji(·). Note that Assumptions 2.1
and 2.2 do not come down to a special case of Assumptions
2.1 and 2.2 of [19] and vice versa.

Remark 3: The distributed averaging of first-order integrator
multi-agent systems can be viewed as a kind of infor-
mation fusion algorithm. Here, we consider the case with
375
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n-dimensional state components, which means that the infor-
mation state to be exchanged is a vector, not a scalar. If
we construct the averaging algorithm for each state com-
ponent and the communication channels of different state
components are independent of each other, then the closed-
loop system degenerates to a special case considered in [19]
(Theorem 4.2 of [19]). However, for the real communication
environment, the communication channels of different state
components may not be independent. This is a reason why
we study high-dimensional distributed averaging algorithms.
Particularly, for the measurement model (2), the communi-
cation channels of different state components are coupled
together and the noises of different state components are not
the same one, which cannot be covered by Li et al. [19].

2.2 Consensus protocol

We call the group of controls u = {ui, i = 1, 2, . . . , N }
a measurement-based distributed protocol, if ui(t) ∈
σ(xi(s), yji(s), 0 ≤ s ≤ t, j ∈ Ni), t ≥ 0, i = 1, 2, . . . , N [3].

Definition 1 [3]: A distributed protocol u is called a mean
square (or almost sure) consensus protocol if it renders
that the system (1) and (2) have the following properties:
for any given x(0) ∈ R

Nn, there is a random vector x∗ ∈
R

n, such that limt→∞ E[‖xi(t) − x∗‖2] = 0, i = 1, 2, . . . , N
(or limt→∞ xi(t) = x∗ a.s. i = 1, 2, . . . , N ). Particularly, if
E(x∗) = (1/N )

∑N
j=1 xj(0), E[‖x∗‖2] < ∞, then u is called

an asymptotically unbiased mean square (or almost sure)
average-consensus protocol, and E[‖x∗ − 1

N

∑N
j=1 xj(0)‖2] is

called the mean square steady-state error.

Note that the asymptotically unbiased mean square (or
almost sure) average-consensus implies that strong consen-
sus can be achieved: the states of agents will converge to
a common value in mean square (or almost surely). This is
essentially different from ‘practical consensus’ or ‘approxi-
mate consensus’, which means that the final states of agents
may not converge to the same value.

In this paper, we consider the following distributed pro-
tocol given by

ui(t) = K
N∑

j=1

aij(yji(t) − xi(t)), t ≥ 0, i = 1, 2, . . . , N (4)

where K ∈ R
n×n is the control gain matrix to be designed.

In the following, we will find the sufficient conditions
on the control gain matrix, the parameters of the net-
work structure and noise processes to ensure the asymp-
totically unbiased mean square (or almost sure) average
consensus.

3 Mean square and almost sure consensus

Denote δ(t) = [(IN − JN ) ⊗ In]x(t). Let δ(t) = [δT
1 (t), . . . ,

δT
N (t)]T, where δi(t) ∈ R

n, i = 1, 2, . . . , N . Define the
unitary matrix TL = [(1/

√
N ), φ2, . . . , φN ], where φi is

the unit eigenvector of L associated with λi(L), that
is, φT

i L = λi(L)φT
i , ‖φi‖ = 1, i = 2, . . . , N . Denote φ =

[φ2, . . . , φN ]. Denote δ̃(t) = (T −1
L ⊗ In)δ(t) and Let δ̃(t) =

[̃δT
1 (t), . . . , δ̃T

N (t)]T, then it can be verified that δ̃1(t) ≡
0. Denote δ(t) = [̃δT

2 (t), . . . , δ̃T
N (t)]T, which is an (N −

1)n dimensional column vector. Denote �0
L = diag(λ2(L),

λ3(L), . . . , λN (L)).
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From (1) and (2), we have

dx(t) = −(L ⊗ K)x(t) + FK(t)dw(t)

where w(t) = [wT
1 (t), wT

2 (t), . . . , wT
N (t)]T ∈ R

N 2n, wi = [wT
1i,

wT
2i, . . . , wT

Ni]T, FK(t) = diag(F1,K(t), …, FN ,K(t)) and
Fi,K(t) = [ai1Kf1i(x1(t) − xi(t)), ai2Kf2i(x2(t) − xi(t)), . . . , aiN

KfNi(xN (t) − xi(t))] ∈ R
n×Nn. According to the definition of

δ(t), it follows that

dδ(t) = −(L ⊗ K)δ(t)dt + ((IN − JN ) ⊗ In))FK(t)dw(t),

where we use the same FK(t) = diag(F1,K(t), ...FN ,K(t)),
where Fi,K(t) = [ai1Kf1i(δ1(t) − δi(t)), ai2Kf2i(δ2(t) − δi(t)),
. . . , aiN KfNi(δN (t) − δi(t))] since fji(δj(t) − δi(t)) = fji(xj(t) −
xi(t)). From the definition of δ(t), we obtain

dδ(t) = −(�0
L ⊗ K)δ(t)dt + (φT(IN − JN ) ⊗ In)FK(t) dw(t).

(5)

Theorem 3.1: Suppose that Assumptions 2.1 and 2.2 hold.
Apply the protocol (4) to the system (1) and (2). If

KT + K

2
− (N − 1)γ 2

max‖K‖2

N
In

is positive definite, then the protocol (4) is an asymptotically
mean square and almost sure average consensus protocol.
Precisely, the closed-loop system under (4) satisfies: for any
given x(0) ∈ R

Nn, there is a random vector x∗ ∈ R
n with

E(x∗) = (1/N )
∑N

j=1 xj(0), such that

lim
t→∞ E[‖xi(t) − x∗‖2] = 0, i = 1, 2, . . . , N (6)

lim
t→∞ xi(t) = x∗, a.s. i = 1, 2, . . . , N (7)

and the steady-state error is given by

E

⎡⎣∥∥∥∥∥x∗ − 1

N

N∑
j=1

xj(0)

∥∥∥∥∥
2
⎤⎦ ≤ ‖K‖2γ 2

maxλN (L)‖δ(0)‖2

N 2λmin(	
f

L(K))
(8)

Moreover, the convergence rates of E‖δ(t)‖2 and δ(t) are
given by

E[‖δ(t)‖2] ≤ exp{−2λmin(	
f

L(K))t}‖δ(0)‖2 (9)

and

lim sup
t→∞

log ‖δ(t)‖
t

≤ −λmin(	
f

L(K)) a.s. (10)

Proof: By Lemma A.1 of [19], applying the Itô formula to
the system (5) yields

d‖δ(t)‖2 = [−2δ
T
(t)(�0

L ⊗ K)δ(t)

+ tr(FT
K(t)[(IN − JN ) ⊗ In]FK(t))] dt + dM (t)

(11)

where dM (t) = 2δ
T
(t)[φT(IN − JN ) ⊗ In]FK(t)dw(t). By the

definitions of JN and FK(t) and Assumption 2.2, noting that
IET Control Theory Appl., 2015, Vol. 9, Iss. 3, pp. 374–380
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a2
ij = aij, we obtain

tr(FT
K(t)[(IN − JN ) ⊗ In]FK(t))

= N − 1

N

N∑
i=1

tr(FT
i,K(t)Fi,K(t))

= N − 1

N

N∑
i=1

N∑
j=1

a2
ij

× tr( f T
ji (δj(t) − δi(t))K

TKfji(δj(t) − δi(t)))

≤ (N − 1)γ 2
max‖K‖2

N

N∑
i=1

N∑
j=1

aij‖δj(t) − δi(t)‖2 (12)

This together with (11) gives (see equation at the bottom of
the page)

which together with

N∑
i=1

N∑
j=1

aij‖δj(t) − δi(t)‖2 = 2δT(t)(L ⊗ In)δ(t)

= 2δ
T
(t)[(φTLφ) ⊗ In]δ(t) (13)

leads to (see equation at the bottom of the page)

where

	
f

L(K) = �0
L ⊗

(
KT + K

2

)
− (N − 1)γ 2

max‖K‖2

N
(�0

L ⊗ In)

This together with the comparison theorem [23] and the
definition of δ(t) leads to (9).

By Assumption 2.2, it is obvious that the system (5)
satisfying the linear growth condition, namely, there exist
positive constants α1 and α2 such that ‖−(�0

L ⊗ K)δ(t)‖ ≤
α1‖δ(t)‖ and ‖(φT(IN − JN ) ⊗ In)FK(t)‖ ≤ α2‖δ(t)‖. By
Mao [24, Theorem 4.2, p. 128], the mean square exponential
stability implies the almost sure exponential stability for the
system (5) with the form (10).

By the properties of the matrix L, from (5), we have

1

N
(1T ⊗ In)x(t) = 1

N
(1T ⊗ In)x(0) + 1

N
MK(t) (14)

where

MK(t) =
∫ t

0

(1T ⊗ In)FK(s) dw(s)
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For any t ≥ 0, by Assumption 2.2 and the Martingale
isometry, noting that aij = 0 or 1, we obtain

E‖MK(t)‖2 =
N∑

i=1

E

[∥∥∥∥∫ t

0

Fi,K(s) dwi(s)

∥∥∥∥2
]

=
N∑

i=1

N∑
j=1

E

[∥∥∥∥∫ t

0

aijKfji(xj(s) − xi(s)) dwji(s)

∥∥∥∥2
]

=
N∑

i=1

N∑
j=1

∫ t

0

a2
ijE‖Kfji(xj(s) − xi(s))‖2

F ds

=
N∑

i=1

N∑
j=1

a2
ij

∫ t

0

E‖Kfji(δj(s) − δi(s))‖2
F ds

≤ ‖K‖2
N∑

i=1

N∑
j=1

aij

∫ t

0

E‖fji(δj(s) − δi(s))‖2 dt

≤ ‖K‖2γ 2
max

N∑
i=1

N∑
j=1

aij

∫ t

0

E‖δj(s) − δi(s)‖2ds

Then by the definition of δ̄(t), it follows from (9) and (13)
that

E‖MK(t)‖2 ≤ 2‖K‖2γ 2
maxλN (L�)

∫ t

0

E‖δ(s)‖2 ds

= 2‖K‖2γ 2
maxλN (L�)‖δ(0)‖2

λmin(	
f

L(K))

× [1 − exp(−2λmin(	
f

L(K)))t] (15)

By
KT + K

2
− (N − 1)γ 2

max‖K‖2

N
In

we know that 	
f

L(K) is positive definite, which together
with (15) implies that M (t) is a square integrable continuous
martingale. By the definition of the Itô integral, as t → ∞,
M (t) converges to a random variable with finite second-
order moment both in mean square and almost surely.
Denote the limit of the right side of (14) by

x∗ = 1

N
(1T ⊗ In)x(0) + 1

N
lim
t→∞ MK(t) (16)

Then from (9) and (10), we have (6) and (7). Since M (t) is
a square-integrable continuous martingale, (16) implies that
E(x∗) = (1/N )

∑N
j=1 xj(0). Letting t → ∞, (15) gives (8).

�

d‖δ(t)‖2 ≤
[
−2δ

T
(t)(�0

L ⊗ K)δ(t) + (N − 1)γ 2
max‖K‖2

N

N∑
i=1

N∑
j=1

aij‖δj(t) − δi(t)‖2

]
dt + dM (t)

d‖δ(t)‖2 ≤ −δ
T
(t)

[
�0

L ⊗ (KT + K) − 2(N − 1)γ 2
max‖K‖2

N
[(φTLφ) ⊗ In]

]
δ(t) dt + dM (t)

= −2δ
T
(t)	

f

L(K)δ(t) dt + dM (t)

≤ −2λmin(	
f

L(K))‖δ(t)‖2 dt + dM (t)
377
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Remark 4: Theorem 3.1 tells us that for achieving asymptot-
ically mean square and almost sure average consensus, we
may select the control gain K such that

KT + K

2
− (N − 1)γ 2

max‖K‖2

N
In

is positive definite. It can be verified that if K = kIn, k ∈ R,
then

KT + K

2
− (N − 1)γ 2

max‖K‖2

N
In

is positive definite if and only if 0 < k < [N/(N − 1)γ 2
max].

An interesting topic is whether we can select K such
that the performances (that is, convergence rate and mean
square steady-state error) of the closed-loop system are opti-
mised. This topic has been discussed preliminarily for the
case with linear vector-valued noise intensity functions in
[19]. However, for the case with non-linear matrix-valued
noise intensity functions, this problem becomes much more
difficult.

For the case where the noise intensity function only
depends on the amplitude of the relative states, we have
the following measurement model and assumption

yji(t) = xj(t) + fji(‖xj(t) − xi(t)‖)ξji(t), j ∈ Ni (17)

where the noise intensity function fji(·) is a non-linear
mapping from R+ to R

n×n.

Assumption 3.1: There exists a positive constant γmax such
that ‖fji(x)‖F ≤ γmaxx, ∀x ∈ R+, i, j = 1, 2, . . . , N .

By Theorem 3.1, we obtain the following result directly.

Corollary 3.1: Suppose that Assumptions 2.1 and 3.1 hold.
Apply the protocol (4) to the system (1) and (17). If

KT + K

2
− (N − 1)γ 2

max‖K‖2

N
In

is positive definite, then the protocol (4) is an asymptotically
mean square and almost sure average consensus protocol.

3.1 Linear dependency on relative distance

In the following, we will consider the case where the noise
intensity function has linear dependency on the relative
distance.

Assumption 3.2: fji(x) = �jix, ∀x ∈ R+, i, j = 1, 2, . . . , N ,
where �ji, i, j = 1, 2, . . . , N are n × n dimensional matrices.

Define

A� =
[

ajitr(�T
ij K

TK�ij) + aijtr(�T
ji K

TK�ji)

2

]

as a new weighted adjacency matrix and denote the associ-
ated Laplacian matrix by L� . We also denote

	̂
f
L(K) = �0

L ⊗
(

KT + K

2

)
− N − 1

N
[(φTL�φ) ⊗ In]

Then we have the following theorem.
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Theorem 3.2: Apply the protocol (4) to the system (1) and
(17). Suppose that Assumptions 2.1 and 2.2 hold. If 	̂

f
L(K)

is positive definite, then the protocol (4) is an asymptotically
mean square and almost sure average consensus protocol.

Proof: The proof is similar to Theorem 3.1 and is omitted
here. �

Corollary 3.2: Apply the protocol (4) to the system (1)
and (17). Suppose that Assumptions 2.1 and 3.2 hold with
�ij = σ In. Then the protocol (4) with K = kIn, k > 0, is an
asymptotically unbiased mean square and almost sure aver-
age consensus protocol if [nkσ 2(N − 1)/N ] < 1, and the
convergence rate is given by

lim
t→∞

log E‖δ(t)‖2

t
≥ −

(
k − (N − 1)n

N
k2σ 2

)
λN (L)

lim
t→∞

log E‖δ(t)‖2

t
≤ −

(
k − (N − 1)n

N
k2σ 2

)
λ2(L)

Proof: If �ij = σ In and K = kIn, then tr(�T
ji K

TK�ji) =
nk2σ 2, which implies that

	̂
f
L(K) =

(
k − (N − 1)n

N
k2σ 2

)
(�0

L ⊗ In)

Then by Theorem 3.2, the conclusion of this corollary holds.
�

3.2 Case with two agents

For the following case with two agents, we give some nec-
essary and sufficient conditions on the control gain to ensure
mean square or almost sure average consensus.

Theorem 3.3: Apply the protocol (4) to the system (1) and
(17) with N = 2. Suppose that Assumptions 2.1 and 3.2
hold. Then the protocol (4) with K = kIn, k ∈ R, is an
asymptotically unbiased mean square average-consensus
protocol if and only if 0 < k < 4

(‖�12‖2
F +‖�21‖2

F )
. Moreover, the

convergence rate is given by

E‖x1(t) − x2(t)‖2 = E‖x1(0) − x2(0)‖2e−k[4−k(‖�12‖2
F +‖�21‖2

F )]t

(18)
The control gain to optimise the convergence rate is k∗ =

2
‖�12‖2

F +‖�21‖2
F

.

Proof: Under the conditions of the theorem, the closed-loop
equation (5) can be rewritten as

dx1(t) = k(x2(t) − x1(t))dt + kf21(‖x2(t) − x1(t)‖)dw21(t)

dx2(t) = k(x1(t) − x2(t))dt + kf12(‖x1(t) − x2(t)‖)dw12(t)

Let x̃(t) = x1(t) − x2(t), which is equivalent to the definition
of δ(t), then we have

d̃x(t) = −2kx̃(t)dt + kf21(‖̃x(t)‖)dw21(t)

− kf12(‖̃x(t)‖)]dw12(t) (19)

Then by Assumption 3.2, and the Itô formula, we obtain

E‖̃x(t)‖2 = ‖̃x(0)‖2 − k[4 − k(‖�12‖2
F + ‖�21‖2

F)]

×
∫ t

0

E‖̃x(s)‖2ds
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which implies (18). Then by direct calculation, we know
that

argmax
k: 0<k< 4

(‖�12‖2
F +‖�21‖2

F )

k[4 − k(‖�12‖2
F + ‖�21‖2

F)]

= 2

‖�12‖2
F + ‖�21‖2

F

�

Remark 5: From Theorem 3.3, we can see that the consensus
condition depends on the trace norm of �ij. If the com-
munication channels for different state components are not
independent, then the non-diagonal elements of �12 and �21

will increase the norm, which means that the interference
from communication channels of other state components
increases the difficulty to achieve consensus.

Remark 6: In [19], it was shown that for the case where the
noise intensity function is a linear vector function of the
relative state, if the control and communication channels
of different state components are independent and homo-
geneous, then 0 < k < N/[(N − 1)σ 2] is a necessary and
sufficient condition to ensure mean square consensus, where
σ is coefficient of the noise intensity function. Here, it can
be seen that for the case with relative-distance-dependent
matrix noise intensity functions, even the control channels
of different state components are independent and homoge-
neous, the number of control channels n still has an explicit
impact on the consensus condition. This is mainly due to
that the dependency of the noise intensity function on the
relative distance is indeed a non-linear dependency on the
relative state.

By Assumption 3.1, the following lemma holds (see [24,
Lemma 4.3.2, p. 120]).

Lemma 1: For all x̃(0) 	= 0 in the system (19), P{̃x(t) 	=
0 on all t ≥ 0} = 1. That is, almost all the sample paths of
any solution starting from a non-zero state will never reach
the origin.

Theorem 3.4: Consider a connected two-agent undirected
network. Suppose that Assumptions 2.1 and 3.2 hold with
�12 = b12In, �21 = b21In, b12 > 0, b21 > 0. Then the pro-
tocol (4) with K = kIn, k ∈ R is an asymptotically unbi-
ased almost sure average-consensus protocol if and only if
−(k/2)[4 − (n − 2)k(b2

12 + b2
21)] < 0, and the convergence

rate is given by

lim
t→∞

log ‖x1(t) − x2(t)‖
t

= −k

2

[
4 − (n − 2)ka12(b

2
12 + b2

21)
]

a.s. (20)

Proof: By Lemma 3.1, x̃(t) 	= 0 for all t ≥ 0 almost surely.
Thus, applying the Itô formula to log ‖̃x(t)‖ yields

2d log ‖̃x(t)‖ = −k[4 − (n − 2)k(b2
12 + b2

21)]dt

+ 2k ‖̃x(t)‖̃xT(t)

‖̃x(t)‖2
[b21dw21(t) − b12dw12(t)]

which implies that

log ‖̃x(t)‖ = 1

2
log ‖x(0)‖ − k

2

[
4 − (n − 2)k(b2

12 + b2
21)

]
t

+ M1(t) − M2(t) (21)
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where

M1(t) =
∫ t

0

kb21‖̃x(s)‖̃xT(s)

‖̃x(s)‖2
dw21(s) and M2(t)

=
∫ t

0

kb12‖̃x(s)‖̃xT(s)

‖̃x(s)‖2
dw12(s)

are two local martingales with M1(0) = M2(0) = 0 and the
quadratic variations

〈M1, M2〉t = k2b2
21t and 〈M1, M2〉t = k2b2

12t

It is obvious that

〈M1, M2〉t

t
= k2b2

21 < ∞ and
〈M1, M2〉t

t
= k2b2

12 < ∞

Applying the law of large numbers gives

lim
t→∞

M1(t)

t
= 0 and lim

t→∞
M2(t)

t
= 0

which together with (21) leads to

lim
t→∞ log ‖̃x(t)‖ = −k

2

[
4 − (n − 2)k(b2

12 + b2
21)

]
which leads to the conclusion of the theorem. �

Remark 7: In this paper, we consider the case with pure
multiplicative measurement noises, that is, the noise inten-
sity function fji(·) satisfies fji(0) = On, otherwise, we may
rewrite the measurement model (2) as

yji(t) = xj(t) + (fji(xj(t) − xi(t)) − fji(0))ξji(t)

+ fji(0)ξji(t), j ∈ Ni

which is both with additive and multiplicative measurement
noises. For this case, the time-varying consensus gain func-
tion a(t) may be introduced into the control protocol, which
is given by

ui(t) = a(t)K
N∑

j=1

aij(yji(t) − xi(t)), t ≥ 0, i = 1, 2, . . . , N

The combination of techniques of [3] and this paper may be
useful for the closed-loop analysis for this kind of consensus
systems. However, this is out of the scope of this paper and
may be an interesting topic for future research.

4 Conclusions

In this paper, the distributed averaging of high-dimensional
first-order agents with relative-state-dependent measurement
noises has been considered. The information exchange
among agents is described by an undirected graph. Each
agent can measure or receive its neighbours’ state infor-
mation with random noises. The noise intensity function
is a non-linear matrix-valued function of relative states of
agents. By the tools of stochastic differential equations and
algebraic graph theory, we give sufficient conditions to
ensure mean square and almost sure average consensus and
379
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the convergence rate and the steady-state error for average
consensus are quantified. Especially, if the noise intensity
function depends linearly on the relative distance with inten-
sity constant σ , then a positive control gain k which satisfies
[nkσ 2(N − 1)/N ] < 1 can ensure asymptotically unbiased
mean square and almost sure average consensus.

For future research, the results can be extended to the
case with discrete-time dynamics, high-order dynamics and
switching topologies.
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